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Irrespective of the nature of the modeled conservation laws, we establish first the micro-
scopic interface continuity conditions for Lattice Boltzmann (LB) multiple-relaxation
time, link-wise collision operators with discontinuous components (equilibrium func-
tions and/or relaxation parameters). Effective macroscopic continuity conditions are
derived for a planar implicit interface between two immiscible fluids, described by the
simple two phase hydrodynamic model, and for an implicit interface boundary between
two heterogeneous and anisotropic, variably saturated soils, described by Richard’s
equation. Comparing the effective macroscopic conditions to the physical ones, we show
that the range of the accessible parameters is restricted, e.g. a variation of fluid densities
or a heterogeneity of the anisotropic soil properties. When the interface is explicitly
tracked, the interface collision components are derived from the leading order continuity
conditions. Among particular interface solutions, a harmonic mean value is found to be
an exact LB solution, both for the interface kinematic viscosity and for the interface ver-
tical hydraulic conductivity function. We construct simple problems with the explicit
and implicit interfaces, matched exactly by the LB hydrodynamic and/or advection-
diffusion schemes with the aid of special solutions for free collision parameters.

KEY WORDS: Lattice-Boltzmann equation, Interface conditions, Immiscible fluids,
Hydrodynamic models, Diffusion and convection, Heterogeneity, Anisotropy, Layered
porous media, Richards’ equation.

1. INTRODUCTION

We study the interface properties of the Lattice Boltzmann (LB) schemes both for
the microscopic two phase (Navier-Stokes) flows and the macroscopic (Darcy’s)
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flows in heterogeneous anisotropic aquifers. Despite the apparent difference of the
resolved equations, both problems share a common numerical feature, namely the
discontinuity of their coefficients and macroscopic derivatives on the interfaces.
LB methods have been applied to multi-phase hydrodynamics since the end of the
eighties. The reader can find overviews of the main approaches in Rothman and
Zaleski,(51) Chen and Doolen,(7) Pan et al.(43) and Raabe.(46) The analysis of two
phase schemes is focused mostly on two principal components: the modeling of
surface tension and the modeling of phase propagation, both are crucial for the
physical description of the interface behavior. Therefore, the effective continuity
relations obtained on an immobile interface between two immiscible fluids is
perhaps a trivial question.

However, even for a planar interface in the absence of surface tension, one
could ask the question about how the microscopic and macroscopic continuity re-
lations are imposed implicitly by the LB scheme. The answer is not trivial since the
Chapman-Enskog analysis(9, 12) does not apply automatically when the derivatives
of the conserved quantities and/or the collision components undergo jumps. The
LB schemes carry distinct kinematic and bulk viscosities with the discontinuous
relaxation parameters of their collision operators. The pressure continuity condi-
tion results in discontinuous coefficients of the equilibrium functions when the
densities of the two fluids differ, at least for the simplest two phase models.(41, 55, 56)

We are not aware of any analysis of the continuity relations for velocity and nor-
mal shear stress tensor components except for the free interface LB methods(21, 36)

where they are imposed explicitly.
The present work extends former analysis(17) for two principal interface ap-

proaches. The first reflects an implicit interface tracking, where the effective
interface location is not relevant for execution of the algorithm. In this paper the
extreme situation is addressed, when the collision operator assigned for one of two
phases (say, “red”) is applied to grid nodes lying below an imaginary interface and
another operator, (say, “blue”) which is applied for grid nodes lying above, regard-
less of the effective phase distribution. For example, the choice of the collision
operator with a majority rule results in a simplified two phase handling for the
immobile flat interface. The question then is what the interface continuity relations
are for the velocity and viscous stress components and where are they satisfied.

The second configuration addresses explicit interface tracking. Here, “blue”
and “red” operators are applied above and below grid nodes where a special inter-
face collision operator is applied. One usually imagines that this corresponds to a
less rough treatment of the grid nodes where the two phases coexist. The question
then is how to define the interface collision components (the equilibrium functions
and relaxation rates). We look for interface collision operators which maintain the
interface continuity conditions in the most accurate way at the prescribed interface
position.
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For the modeling of stratified (layered) soils, the interface (boundary) po-
sition within or between mesh nodes is selected a priori. Variably saturated
macroscopic flow is described by the highly non-linear, parabolic type Richard’s
equation. Its modeling represents a difficult numerical task.(6, 39) The LB schemes
have recently been extended in Refs. 25, 26 for Richard’s equation in heteroge-
neous anisotropic aquifers. They are based on the LB approaches(23, 57, 58) for the
anisotropic advection-diffusion equations (AADE). Although the normal com-
ponent of the advective-diffusive flux (Darcy’s velocity) is continuous on the
interfaces, the conserved mass quantity (volumetric water content) and pressure
gradients undergo jumps on the interfaces when the two soils have different reten-
tion or conductive behavior. The collision components (the relaxation parameters
and/or the equilibrium functions) become discontinuous on the soil interfaces
when the conductive and/or anisotropic properties vary. Saturated flow in hetero-
geneous anisotropic stratified aquifers, so called “groundwater whirls”,(1) repre-
sents a “simple” convection-diffusion problem with discontinuous diagonal and
off-diagonal elements of the diffusion tensors.

We first develop the LB framework for the uniform description of the hydro-
dynamic and AADE models. For this purpose we restrict ourselves to link-wise col-
lision operators, with multiple relaxation times for the AADE and two relaxation
times for the Navier-Stokes equations (NSE below). The latter restriction comes
from an additional collision constraint, the momentum conservation. We then de-
velop the analysis for the explicit and implicit interface descriptions. Effective
continuity relations are first formulated in terms of the symmetric/anti-symmetric
equilibrium and non-equilibrium solution parts. They are then restricted to NSE
and AADE modeling. In particular, the first-order analysis shows how to select an
interface collision operator for exact solutions, e.g. the piece-wise linear (Couette)
flow in a straight channel or the vertical Darcy’s flow in heterogeneous anisotropic
media. The second-order analysis further restricts free collision components and
enables exact piece-wise parabolic solutions, e.g. two phase Poiseuille flow with
different viscosities and/or different forcing.

The paper is organized as follows. Section 2.1 presents the generic LB
schemes based on the decomposition of the collision operator on symmetric
and anti-symmetric parts. Section 2.2 adapts these schemes for the hydrody-
namic equations and discusses the two phase modeling. Section 2.3 generalizes
the AADE schemes from Ref. 23 and discusses the modeling of variably satu-
rated Darcy’s flow. Section 3 derives the generic interface relations for explicit
and implicit tracking of planar interfaces. The interface relations are developed
for the NSE in Sec. 4 and for the AADE in Sec. 5, they are demonstrated by
exact solutions. Sub-sections 4.2.4 and 5.2.4 resume the obtained eigenvalue
and equilibrium solutions for the explicit interfaces. Section 6 concludes the
paper.
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2. LATTICE BOLTZMANN SCHEMES

2.1. Evolution Equation

The unknown variable of the scheme is the population vector f (�r, t) =
{ fq , q = 0, . . . , Q − 1} which is initialized at time t = 0 on the nodes �r of an
equidistant d-dimensional computational mesh. The evolution of the populations
obeys the following update rule:

fq (�r + �Cq , t + 1) = f̃q (�r, t), q = 0, . . . , Q − 1,

f̃q (�r, t) = fq (�r, t) + (A · f ne.)q + Qq , (A · f ne.)q = pq + mq ,

pq = λ+
q

(
f +
q − f eq.+

q

)
, mq = λ−

q

(
f −
q − f eq.−

q

)
,

f ±
q = 1

2
( fq ± fq̄ ), �Cq = −�Cq̄ . (1)

The velocity set contains Q vectors: one zero, �C0 = �0, for the rest population, and
Q − 1 non-zero ones, �Cq = {Cqα, α = 1, . . . , d}, q = 1, . . . , Q − 1, for the
moving populations. Each non-zero velocity vector has a diametrically opposite
one. Below we refer to a pair of anti-parallel velocities (�Cq , �Cq̄ ) as to a link. A pair
of velocities parallel to the main coordinate axes will be referred to as a coordinate
link. Other velocity pairs are labeled as diagonal links. For the coordinate links,
CqαCqβ ≡ 0 if α �= β and for the diagonal links, CqαCqβ �= 0 at least for the one
pair α �= β.

The linear collision operator, (A · f ne.), acts on the non-equilibrium part of
the population, f ne. = { f ne.

q } = { fq − f eq.
q }. The operator is specified on a link

(L-)basis. Projection of vector f on to the L-basis vectors are equal to its symmetric
(even) and anti-symmetric (odd) counterparts: fq = f +

q + f −
q . The even parts are

equal for a pair of populations with anti-parallel velocities, f +
q = f +

q̄ , and the odd
parts have opposite signs, i.e. f −

q = − f −
q̄ . The source termQq is also decomposed

into symmetric and anti-symmetric parts, Qq = Q+
q + Q−

q . We restrict ourselves

to the forcing �F (only) for the NSE and the mass source M (only) for the AADE:

NSE: Qq = Q−
q , Q+

q = 0, �F =
Q−1∑

q=1

Q−
q

�Cq ,

AADE: Qq = Q+
q , Q−

q = 0, M =
Q−1∑

q=0

Q+
q . (2)

The mass variable, s, is defined as the sum of the population solution, i.e. s =∑Q−1
q=0 fq . The mass conserving equilibrium f eq. = { f eq.

q } is first written as:

f eq.
q = f eq.+

q + f eq.−
q , q = 0, . . . , Q − 1,
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f eq.−
q = t�

q Jq , Jq = (�J · �Cq ), q = 0, . . . , Q − 1,

f eq.+
q = D̄(s)Eq , q = 1, . . . , Q − 1,

f eq. +
0 = f eq.

0 = s −
Q−1∑

q=1

f eq.+
q = s − D̄(s)

Q−1∑

q=1

Eq . (3)

“Odd” components f eq.−
q are proportional to projection of a d-dimensional vector

�J on to the velocity vectors �Cq . The weights t�
q are isotropic, i.e. they have one

value per velocity class p = |�Cq | and

Q−1∑

q=1

t�
q CqαCqβ = δαβ, 3

Q−1∑

q=1

t�
q C2

qαC2
qβ = 1, α �= β. (4)

Thus {t�
1 = 1

3 , t�
2 = 1

12 } for d2Q9, {t�
2 = 1

8 } for d3Q13, {t�
1 = 1

3 , t�
3 = 1

24 } for
d3Q15, {t�

1 = 1
6 , t�

2 = 1
12 } for d3Q19, following.(13, 42) The equilibrium variable

D̄(s) is either a linear or a non-linear function of the conserved quantities. The
symmetric “weight” functions Eq may represent any arbitrary function of the
conserved quantities and external components, e.g., the advection-velocity or the
source terms.

The macroscopic behavior is usually obtained with the help of the Chapman-
Enskog expansion,(9, 12) which develops the microscopic conservation relations up
to second order about the equilibrium, in terms of a small parameter ε, ε = 1/L ,
L being a characteristic length. The Chapman-Enskog analysis is much easier to
obtain in a consistent way when the first, second and any next order term of the
expansion does not have any projections on to the conserved vectors. Although the
source term can be incorporated, totally or partially, into the equilibrium function,
which leads to equivalent forms of the evolution equation based on non-conserving
equilibrium functions, it is important to note that the equilibrium function contains
the conserved quantities in this paper. The mass conservation solvability condition
of the evolution equation implies that the post-collision population part has no
mass, provided that all “even” eigenvalues λ+

q are equal and that “odd” eigenvalues
λ−

q are equal link-wise:

NSE, AADE : s =
Q−1∑

q=0

fq =
Q−1∑

q=0

f eq.
q ,

Q−1∑

q=0

pq = 0,

λ+
q = λe, λ−

q = λ−
q̄ , q = 0, . . . , Q − 1. (5)
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For the hydrodynamic equation, conservation of momentum is required:

NSE : �J =
Q−1∑

q=1

fq �Cq =
Q−1∑

q=1

f eq.
q

�Cq ,

Q−1∑

q=1

mq �Cq = 0,

λ−
q = λ−

q̄ = λo, ∀ q = 1, . . . ,
Q − 1

2
. (6)

For both NSE and AADE, the post-collision counterparts pq and mq can therefore
be computed once for each link:

pq = pq̄ , mq = −mq̄ , �Cq = −�Cq̄ . (7)

The eigenvalue functions �(λ) = −( 1
2 + 1

λ
), ∀ λ will be labeled as:

NSE, AADE: �e = �(λe),

NSE: �q = �o = �(λo), λ−
q = λ−

q̄ = λo, ∀ q = 1, . . . ,
Q − 1

2
,

AADE: �q = �(λ−
q ), λ−

q = λ−
q̄ , ∀ q = 1, . . . ,

Q − 1

2
. (8)

With this notation, one can represent the population solution and its post-collision
values as:

fq (�r) = f eq.+
q + f eq.−

q −
[

1

2
+ �e

]
pq −

[
1

2
+ �q

]
mq , ∀q,

f̃q (�r) = f eq.+
q + f eq.−

q +
[

1

2
− �e

]
pq +

[
1

2
− �q

]
mq + Qq , ∀q. (9)

All eigenvalues λ are restricted to the linear stability interval: −2 < λ < 0 such that
�(λ) > 0, ∀λ. The two-relaxation-time TRT-operator with two eigenvalues, λe and
λo, is suitable for both mass and momentum conservation laws. The TRT-operator
is thus a particular form of the multiple-relaxation-time MRT−operator.(12, 14)

The MRT−operator reduces to the TRT-operator when the eigenvalues are equal
to λe for all even eigenvectors, and equal to λo for all odd eigenvectors. The
TRT-operator does not, therefore, have any “macroscopic” advantage over the
MRT-operator but does so for the computational efficiency and simplicity of the
analysis and coding. Also, the link based approach naturally incorporates the multi-
reflexion type boundary conditions.(2, 22, 24, 44) The BGK-operator(42) is a particular
form of the TRT-operator when λe = λo and has a single relaxation parameter
τ = − 1

λe
= − 1

λo
. Besides an advanced computational efficiency (since one of two

eigenvalues is free and can be used to improve for the stability and the higher
order accuracy), the TRT model has some “macroscopic” advantages over the
BGK one. In particular, the TRT-operator conserves momentum independently
of the even (viscosity) eigenvalues. Two phase LB models may then avoid an
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artificial construction of the equilibrium momentum value for fluids with different
viscosities (e.g, BGK models).(43, 49) The anisotropic diffusion equations can be
modeled with the mass conserving equilibrium functions, since the equilibrium
mass value can be assigned independently of the diffusion (odd) eigenvalues,
which is in contrast to the BGK AADE models.(57, 58)

2.2. Hydrodynamic Equations (NSE)

2.2.1. One Phase

We fit rel. (3) to the NSE equilibrium function assuming that the fluid density,
ρ, and the macroscopic momentum, �j, are given by:

ρ = s, D̄(s) = P(ρ), P(ρ) = c2
s ρ,

Eq = t�
q

(
1 + 1

c2
s

E (u)
q (�u)

)
, E (u)

q (�u) = (3u2
q − u2)

2
,

�u =
�j
ρ

, �j = �J + 1

2
�F, uq = (�u · �Cq ), u2 =

d∑

α=1

u2
α, (10)

where c2
s is a free parameter. The correction �F for the total momentum �J was first

introduced for the MRT models(1, 18, 21, 22, 34) where the projections on the lattice
velocities �Cα represent the conserved quantities. For the TRT collision operator,
the equivalent form is:

f eq.−
q = t�

q (�j · �Cq ), Q−
q → Q−

q + λo

2
t�
q (�F · �Cq ), q = 1, . . . , Q − 1. (11)

This form reduces to the BGK form(4) (see Eq. (19) taking τ = − 1
λo

and Q−
q =

t�
q (1 + λo

2 )(�F · �Cq )). If necessary, the equilibrium distribution can include even
order corrections of the forcing term (Eq. (20) in Ref. 29), but one replaces τ with
− 1

λe
for the symmetric terms.
Use of proportional weights for the pressure and momentum variables sim-

plifies the link-wise coupling of the pressure gradients, momentum gradients and
forcing terms in the solution expansion of the populations. This choice, however,
may happen not to be the most stable (see Refs. 14, 37). The “incompressible”
variants(9, 11) replace P

c2
s

E (u)
q (�u) by ρ0 E (u)

q (�u). The non-linear term E (u)
q (�u) vanishes

for the Stokes equation.
The Chapman-Enskog analysis(9) of the solvability conditions (5) and (6) is

developed for the MRT hydrodynamic models in Refs. 12, 13, 21, assuming that
the second order pressure gradients and force gradients are at least of order O(ε3).
Replacing relevant (entering into the transport coefficients) even eigenvalues by
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λe, one can use the MRT hydrodynamic equations for the TRT and BGK models:

∂tρ + ∇ · �j = O(ε3),

∂t�j + ∇ ·
(�j ⊗�j

ρ

)

= −∇ P + ∇ · (ν∇�j) + ∇(∇·νξ
�j) + �F + O(ε3),

ν = 1

3
�e, νξ = (ν(2 − 3C) + ξ ),

ξ = (C − c2
s )�e, C = d + 2

3d
. (12)

The kinematic viscosity ν and the bulk viscosity νξ are valid for d2Q9, d3Q15 and
d3Q19 models. The d3Q13 model is presented in Ref. 13. The deficiency of the
TRT and the BGK collisions for the compressible regime is that both viscosities
are defined via one eigenvalue.

Assuming the characteristic velocity, U , be O(ε), the density fluctuation
around its average value ρ0 is of second order in terms of the Mach number, Ma:

ρ = ρ0(1 + Ma2 P ′), P ′ = P(ρ) − P(ρ0)

ρ0U 2
, Ma = U

cs
. (13)

When Ma2 P ′ is neglected, Eq. (12) takes the form of the incompressible NSE:

∇ · �j = 0,

ρ0∂t �u + ρ0∇ · (�u ⊗ �u) = −∇ P + ∇ · (µ∇�u) + �F + O(ε3), µ = ρ0ν.(14)

2.2.2. Two Phases

The single phase Navier-Stokes solver is one component of any multi-phase
scheme. Two other principal components are the modeling of the surface tension
and the modeling of the phase propagation. Below we derive the continuity rela-
tions first in a generic form, suitable for any equilibrium distribution and for any
source term. Expanding them, one may include the surface tension term, either via
the symmetric equilibrium part (e.g., for the momentum conserving perturbation
term(19, 28, 30, 55) or for the free-energy formulation(5, 33, 50)), or via the forcing term,
for the models with “intermolecular interactions”.(32, 43, 48) A study of the impact
of the perturbation term on the derived continuity relations (in Ref. 19) gives one
example.

The choice of the advection scheme is conditioned by the selected phase de-
scription and desired structure (thickness) of the interfaces. “Kinetic” type schemes
employ the convection-diffusion LB schemes to propagate the mass fraction
variables(5, 50) or the index function.(31) “Recoloring type” schemes(19, 21, 28, 30, 55)

typically yield extremely sharp (one-two lattice units) interfaces. The effective
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diffusion (anti-diffusion) coefficients may depend on the implementation details
and they are difficult to derive (see Ref. 35). The schemes in Refs. 45, 47 try to
control the interface width. The continuity analysis below does not need to specify
the advection scheme but assumes that it is able to produce and maintain, for a flat
interface, the two configurations described below.

Let us use the historical “color” notation for two fluids: “red” (R) and “blue”
(B). Let i (R)(�r, t) be the phase indicator, such that the (R)-collision operator is
applied when i (R) = 1 and the (B)-collision operator is applied when i (R) = 0. Red
and blue operators can have different equilibrium “weight” parameters, relaxation
parameters and forcing terms. To complete the model, one needs to describe the
collision components (equilibrium functions and relaxation parameters) for the
nodes where two phases coexist, then 0 < i (R) < 1.

The analysis below treats two collision configurations. The first one, referred
to as an implicit interface, is handled with only two collision operators, (R) and
(B), and one of them is selected at the nodes where two fluids coexist. The decision
argument here is the majority of the occupying phases: (R) if i (R) ≥ i (B) and (B)
otherwise. This situation is sketched in Fig. 1. The second configuration, referred
to as an explicit interface, is handled with three collision operators, (R), (B) and
interface (I ). This situation is sketched in Fig. 2. The analysis below aims to
build the (I )-operator from the prescribed continuity relations and to relate the
conserved equilibrium interface moments to their macroscopic “equivalents”.

Our computations are performed with the reformulated model of Gunstensen
et al.(28) In contrast to the original scheme, we operate with only one kind of the
populations which obey the evolution Eq. (1). The phase distribution is represented
with one additional variable, the mass fraction of one of the two fluids, say
ρ(R)(�r, t), then i (R) = ρ(R)/ρ. The phase update is computed as:

ρ(R)(�r, t + 1) = δ0ρ
(R)(�r, t) +

Q−1∑

q=1

δqρ
(R)(�r − �Cq , t), (15)

where δqρ
(R), q = 0, . . . , Q − 1 is a solution of the “recoloring” scheme which

preferentially redirects each fluid to the neighboring sites of the same “color”,
constrained by the local mass conservation:

∑Q−1
q=0 δqρ

(R) = ρ(R)(�r, t). Further
details can be found in Ref. 21.

The analysis is restricted to a planar interface z = const . Mass conservation
is maintained on the material interface (where there is no mass exchange with
the surrounding bulk phases) when both the normal and tangential mass averaged
velocities are continuous on the interface (see, e.g., in Refs. 8, 10). Assuming a
constant density for each bulk fluid, the velocity is continuous on the interface:

u(R)
α = u(B)

α = u(I )
α , α = {x, y, z}. (16)
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In the absence of surface forces, and for a material interface with no mass, the
balance of the momentum for Eq. (12) becomes:

{
P (R) − 2ν(R)∂z j (R)

z = P (B) − 2ν(B)∂z j (B)
z ,

ν(R)D(R)
αz = ν(B)D(B)

αz , Dαz = (∂α jz + ∂z jα).
(17)

In the incompressible limit, these relations are equivalent to the continuity of the
normal and tangential components of the normal shear stress tensor:

{
P (R) − 2µ(R)∂zu

(R)
z = P (B) − 2µ(B)∂zu

(B)
z ,

µ(R) D(R)
αz = µ(B) D(B)

αz , Dαz = (∂αuz + ∂zuα).
(18)

2.3. Anisotropic Advection-diffusion Equations (AADE)

2.3.1. Basic Techniques

Assuming that �J is an external advective vector in (3), the second order
approximation of the solvability condition (5) takes the form of the advection-
dispersion equation:

∂t s + ∇ · �J = ∇ · �D + M, �D = {Dβ = −(� · Cβ)}, β = 1, . . . , d

� = {
q} = −�qmq = −�q (∂t f eq.−
q + ∂qD̄(s)Eq ) + O(ε2). (19)

The tensor of the numerical diffusion associated with ∂q∂t f eq.−
q (see Refs. 23,26)

can be removed for linear convection-diffusion equations with the help of the
non-linear equilibrium term t�

q s E (u)
q (�u) (see rel. (10)) when D̄(s) = s, �J = �us and

all eigenvalues λ−
q are equal (TRT operator). When the “weight” functions Eq do

not vary in space, the “pure” diffusion counter-part of the diffusive flux vector −�D
becomes:

−Dα = −Dαβ∂βD̄(s), Dαβ = 2
(Q−1)/2∑

q=1

TqCqαCqβ, Tq = �q Eq . (20)

The inverse of this relation yields the solution, Tα , for the coordinate links and
solution, Tq , for the diagonal links:

Tα = 1

2
(Dαα − sαα), sαα = 2

∑

q(diag)

TqC2
qα, α = 1, ..., d, (21)

Tq = 1

4
(sd + DxyCqx Cqy), sd = sαα = sxy, for d2Q9, (22)

Tq = 1

8

(
sd +

∑

α �=β

DαβCqαCqβ

)
, sd = sαα = sαβ, for d3Q15, (23)
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Tq = 1

4
(sαβ + DαβCqαCqβ), sαβ = sαα + sββ − sγ γ

2
, for d3Q13, d3Q19.

(24)

The models based on coordinate stencils (d2Q5, d3Q7) yield sαα = 0 and cannot
handle the off-diagonal elements. The d3Q13 set has no coordinate links at all, and
rel. (24) fixes Tq values for its 6 diagonal links (with sαα = Dαα). For the models
with two velocity classes, {sαα} can be regarded as free parameters. The d2Q9 and
d3Q15 have only one free parameter sd . The d3Q19 has three free parameters,
sαα , sββ and sγ γ . When {sαα} and the solution (21)–(24) for {Tq} are fixed, one
can either specify Eq or prescribe �q for each link. Two principal approaches
are developed in Refs. 23, 24, 26. The first technique, referred to as the TRT-E
model, combines the TRT-operator and the anisotropic equilibrium weights, {Eq},
(E-model). The second technique, referred to as the (Link) L- model, combines the
anisotropic eigenvalue set {�q} with the isotropic equilibrium weights Eq = cet�

q ,
ce > 0 is a free parameter, restricted only by the stability condition. Von Neumann
stability analysis(15) finds the positivity of the weights { f eq.+

q /s} as a necessary
stability condition only for the immobile population (at least in case of the diagonal
tensors). If one requires the positivity for other weights, the condition {Tq ≥ 0}
confines the free parameters sαα:

|Dαβ | ≤ sαβ, sαα = (sαβ + sαγ ) ≤ Dαα, Dαα ≥ 0, (25)

and therefore, restricts the range of the off-diagonal elements:

|Dαβ | ≤ min
α

Dαα, for d2Q9, d3Q15, (26)

|Dαβ | + |Dαγ | ≤ Dαα, for d3Q13 d3Q19, (27)

|Dαβ | ≤ 1

2
(Dαα + Dββ − Dγ γ ), for d3Q13. (28)

We discuss in Ref. 27 available positive definite anisotropic diffusion tensors
for each velocity set.

2.3.2. Flow in Stratified Porous Media

We consider the modeling of macroscopic flow in stratified porous media.
Assuming that the air phase is continuous and at atmospheric pressure, the flow
velocity �u(i) inside the i th layer can be related to the capillary pressure, ψ (i)(θ ),
via Darcy’s law:

∂tθ + ∇ · �u(i) = q (i)
s , �u(i) = −K(i)(∇h(i)(θ ) + �1z), h(i)(θ ) = −ψ (i)(θ )

ρ0g
.

(29)
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Pressure head distribution h(i)(θ ) is a given function of the moisture content
variable θ (i)(�x, t), a relative volumetric part of a soil occupied by water. The
examples of the retention curves are plotted in Fig. 11. The medium is saturated
when θ (i) = θ

(i)
s and it is dry when θ (i) = θ

(i)
r . In Eq. (29), q (i)

s is a mass source,
�1z is an upward unit vector, K (i)

αβ = K (h)K a(i)
αβ where K (i)(h) = k(i)ρ0g/µ is the

hydraulic conductivity function and k(i)Ka(i) is the permeability tensor. For the
saturated media θ (i) ≡ θ

(i)
s and Richard’s Eq. (29) becomes:

∇ · K (i)(∇h(i) + �1z) = 0, K (i)(h) ≡ K (i)
s , h(i) ≥ h(i)

s = h(i)(θ (i)
s ). (30)

Let L = L ′/L , U = U ′/U and T = T ′/T (T = L/U , T ′ = L ′/U ′) be ra-
tios of the characteristic values for the length, velocity and time variables be-
tween the computational and physical variables. Let the diagonal components
L = diag(Lx , L y, Lz) define the scaling factors for every direction with respect to
the characteristic scalingL between the cuboid computational grid and orthorhom-
bic discretization grid. On the computational grid, the variables are t ′ = T t and
�x′ = LL · �x, and for each layer Richard’s Equation (29) becomes:

∂t ′θ + ∇′ · �J = ∇′ · K′ · ∇h′ + M, h′ = Lh, �J = −K′(h)L · �1z,

K′ = K ′(h)Ka′
, K ′(h) = UK (h), Ka′ = LKaL, M = qs/T . (31)

The Darcy velocity (in lattice units) is the sum of the advective and diffusive
fluxes,

u′
α = Jα + 
α, 
α = (� · Cα), α = 1, . . . , d. (32)

The LB formulations(25, 26) for Eq. (29) are based on the different physical
meanings assigned to the equilibrium (diffusion) variable D̄(s):

– The mixed, θ/h−form solves the original Eq. (31): s = θ , D̄(s) = h′.
– The moisture content, θ−form fits Eq. (31) to Eq. (19) with s = D̄(s) = θ

and the diffusion tensor �Dαβ = ∂θ h′K′
αβ(θ ).

– The Kirchoff transform, θ/K−form with s = θ results in constant coef-
ficients of the diffusion tensor using D̄(s) = ∫ h′(θ)

−∞ K ′(h)dh, then �Dαβ ≡
Ka′

αβ .
– The pressure head, h−form with D̄(s) = h′ and s = s0 + (h′ − h′

0)/H eq.

(s0 and h′
0 are some constants), is suitable for steady state solutions to

Eq. (31). The parameter H eq. may accelerate convergence. Any of the
formulations above can be switched to h−form for the saturated zone, using
a regular continuation of the retention curves beyond the air entry value hs .
This is given by linear extrapolation: h′(θ ) = h′

s + ∂θ h′(θs)(θ − θs), then
s0 = θs , h′

0 = h′
s and H eq. = ∂θ h′(θs).
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These formulations select the diffusion variable along the lines of the well known
direct discretization schemes for Richard’s equation: mixed and pressure-based
form are discussed in Refs. 6, 39, the Kirchoff-transform based methods are de-
veloped in Ref. 52.

We will assume a horizontal interface z = z(I ) between (R) and (B) soil
layers. The pressure distribution h(�r) and the normal component uz(�r) should be
continuous on the interface. When the vertical components K (i)

zz are heterogeneous,
the convective component −K(i)�1z of the Darcy velocity is not continuous, and the
continuity of the component u(i)

z and the continuity of the diffusive flux component
−K(i)∇h differ. On the other hand, the continuity of uz = u′(i)

z /(UL (i)
z ) is not

equivalent to the continuity of the computational variable u′(i)
z when the vertical

refinement is not uniform (scale factors L (i)
z differ). For steady state solutions,

one can divide equations (31) by the L (i)
z -value in each i th sub-domain, without

changing the solution procedure (see Ref. 26). In what follows we will assume
that the coefficients of the solved equations are adjusted, such that the interface
continuity relations are:

h
′(R)(z(I )) = h

′(B)(z(I )),

(J (R)
z + 
(R)

z )(z(I )) = (J (B)
z + 
(B)

z )(z(I )). (33)

3. GENERIC INTERFACE RELATIONS

3.1. Assumptions

The analysis is based on the second-order steady state expansion of the non-
equilibrium part:

p0 = 0, m0 = 0,

pq = pq
[1] + pq

[2] + O(ε3), mq = mq
[1] + mq

[2] + O(ε3), q = 1, . . . , Q − 1,

(34)

where, with the help of the directional derivatives along �Cq , ∂qφ = ∇φ · �Cq =∑d
α ∂αφCα , ∀ φ:

NSE : mq
[1] = ∂q f eq.+

q , pq
[1] = ∂q f eq.−

q ,

mq
[2] = −∂q�e pq

[1] − Q−
q , pq

[2] = O(ε3). (35)

AADE : pq
[1] = ∂q f eq.−

q , mq
[1] = ∂q f eq.+

q ,

pq
[2] = −∂q�qmq

[1] − Q+
q , mq

[2] = O(ε3). (36)
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Fig. 1. Sketch for implicit interface tracking.

These relations follow from the generic form of the second order expansion,
e.g. Eqs. (12–13) in Ref. 23, dropping the time derivatives. They can be obtained
directly, by applying a Taylor series in space for the evolution Eq. (1). In agreement
with the terms neglected for the macroscopic Eqs. (12) and (19), we neglect pq

[2]

for the NSE, as related to the second derivatives of the pressure and third derivatives
of the velocity, and mq

[2] for the AADE, as related to the second derivatives of the
advective velocity and third derivatives of the diffusion variable. We restrict the
analysis to an immobile interface:

jz(�r(I )) = 0, ∂z jz(�r(I )) = 0. (37)

Although the analysis can be extended for more general situations, it should then
incorporate a dynamic component which is responsible for the mass transfer. This
depends on the actual advective algorithm and lies outside the scope of the present
work.

3.2. Implicit Interface

We formulate and examine implicit interface conditions prescribed by the
evolution Eq. (1) on an imaginary immobile flat interface between two distinct
fluids (NSE) or two heterogeneous layers of porous media (AADE). We consider
two grid nodes linked by a pair of anti-parallel velocities: �r(R) = �r(B) + �Cq̄ and
�r(B) = �r(R) + �Cq (see sketch in Fig. 1):

{
fq (�r(B), t + 1) = f̃q (�r(R), t), q ∈ I
f̃q̄ (�r(B), t) = fq̄ (�r(R), t + 1), q̄ ∈ Ī .

(38)

We suppose that for each �Cq , {q ∈ I }, there is an opposite velocity �Cq̄ , {q̄ ∈ Ī },
and vice-versa, and will call the link { �Cq , �Cq̄} an “interface” link. We impose the
red (R) collision operator at �r(R) and the blue (B) collision operator at �r(B). Then,
for the steady state, using the notation 
q for −�qmq (cf. (19)) and taking into
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account that f eq.+
q = f eq.+

q̄ , f eq.−
q = − f eq.−

q̄ , pq = pq̄ , mq = −mq̄ , 
q = −
q̄ ,
substitution of rel. (9) into Eq. (38) gives:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f eq.+(B)
q̄ − f eq.−(B)

q̄ − ( 1
2 + �

(B)
e )p(B)

q̄ + 1
2 m(B)

q̄ − 

(B)
q̄

= f eq.+(R)
q + f eq.−(R)

q + ( 1
2 − �

(R)
e )p(R)

q + 1
2 m(R)

q + 

(R)
q + Q(R)

q ,

f eq.+(B)
q̄ + f eq.−(B)

q̄ + ( 1
2 − �

(B)
e )p(B)

q̄ + 1
2 m(B)

q̄ + 

(B)
q̄ + Q(B)

q̄

= f eq.+(R)
q − f eq.−(R)

q − ( 1
2 + �

(R)
e )p(R)

q + 1
2 m(R)

q − 

(R)
q .

(39)

The sum and difference of these equations yields two conditions per link:
[

S(R)
q + 1

2
Q(R)

q

]
(�r(R)) =

[
S(B)

q̄ (�r(B)) + 1

2
Q(B)

q̄

]
(�r(B)),

with Sq = f eq.+
q + 1

2
mq − �e pq , (40)

[
G(R)

q + 1

2
Q(R)

q

]
(�r(R)) = −

[
G(B)

q̄ + 1

2
Q(B)

q̄

]
(�r(B)),

with Gq = f eq.−
q + 
q + 1

2
pq . (41)

Relations (39)–(41) rely only on the link-based form of the evolution equation.
They are exact for any equilibrium distribution. Below we analyze them for the
mid-point (interface point) �r(I ):

�r(I ) = �r(R) + 1

2
�Cq = �r(B) + 1

2
�Cq̄ . (42)

3.3. Explicit Interface

We assume that the interface grid node is located midway between two grid
nodes �r(R) = �r(I ) + �Cq̄ and �r(B) = �r(I ) + �Cq (see sketch on Fig. 2). We impose
the (R)-collision operator at �r(R), the (B)-operator at �r(B) and the interface (I )-
collision operator at �r(I ). The propagation from �r(I ) to �r(B) and �r(R) gives two
equations:

{
f̃ (I )
q (�r(I ), t) = f (B)

q (�r(B), t + 1),
f (R)
q̄ (�r(R), t + 1) = f̃ (I )

q̄ (�r(I ), t), q ∈ I.
(43)

The propagation from �r(R) and �r(B) toward �r(I ) completes the system:
{

f (I )
q (�r(I ), t + 1) = f̃ (R)

q (�r(R), t) = f (R)
q (�r(I ), t + 1),

f (I )
q̄ (�r(I ), t + 1) = f̃ (B)

q̄ (�r(B), t) = f (B)
q̄ (�r(I ), t + 1), q ∈ I.

(44)
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Fig. 2. Sketch for explicit interface tracking.

An immobile interface node will maintain the continuation of the bulk solutions
if it acts as a “red” node for the populations leaving it for the red “layer” and as a
“blue” node for the opposite one, i.e. when in (43):

f̃ (I )
q (�r(I ), t) = f̃ (B)

q (�r(I ), t), f̃ (I )
q̄ (�r(I ), t) = f̃ (R)

q̄ (�r(I ), t), q ∈ I. (45)

At steady state, replacing f̃ (I )
q (�r(I )) by f +(R)

q + f −(R)
q , f (I )

q̄ (�r(I )) by f +(B)
q̄ − f −(B)

q ,
Eq. (45) reads as:

f +(R)
q + f −(R)

q + λ(I )
e f ne.+(I )

q + λ−(I )
q f ne.−(I )

q + Q(I )
q =

f +(B)
q + f −(B)

q + λ(B)
e f ne.+(B)

q + λ−(B)
q f ne.−(B)

q + Q(B)
q ,

f +(R)
q̄ + f −(R)

q̄ + λ(R)
e f ne.+(R)

q̄ + λ−(R)
q f ne.−(R)

q̄ + Q(R)
q̄ =

f +(B)
q̄ − f −(B)

q + λ(I )
e f ne.+(I )

q − λ−(I )
q f ne.−(I )

q + Q(I )
q̄ , (46)

where f ne.+(I )
q = 1

2
( f (R)

q + f (B)
q̄ ) − f eq.+(I )

q ,

f ne.−(I )
q = 1

2
( f (R)

q − f (B)
q̄ ) − f eq.−(I )

q . (47)

Using the notation λ
−(I )
q f ne.−(I )

q = m(I )
q , λ

(I )
e f ne.+(I )

q = p(I )
q , their sum and differ-

ence are, respectively:

m(I )
q + 1

2
(Q(I )

q − Q(I )
q̄ ) = (S(B)

q − S(R)
q̄ )(�r(I )) + 1

2
(Q(B)

q − Q(R)
q̄ )

with Sq = f eq.+
q + 1

2
mq − �e pq , (48)
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p(I )
q + 1

2
(Q(I )

q + Q(I )
q̄ ) = (G(B)

q + G(R)
q̄ )(�r(I )) + 1

2
(Q(B)

q + Q(R)
q̄ )

with Gq = f eq.−
q + 
q + 1

2
pq . (49)

Note that the Sq and the Gq terms are equal to those in (40)–(41). The following

elements of the interface collision operator have to be defined: λ
(I )
e and { f eq.+(I )

q }
(or at least {p(I )

q }), {λ−(I )
q } and { f eq.−(I )

q } (or at least {m(I )
q }), and the interface

source term Q(I )
q .

4. HYDRODYNAMIC EQUATIONS: INTERFACE ANALYSIS

We analyze the interface conditions assuming that the equilibrium function
is given by rel. (10) in the bulk, the source term is represented by the forcing
(first rel. (2)), and the collision operator has two eigenvalue functions (8): �

(i)
e ,

proportional to the kinematic viscosity value ν(i), and a free parameter �
(i)
o . For

all numerical tests, the d3Q15 velocity set is used. We put “red” fluid below the
interface and “blue” fluid above it.

4.1. Implicit Interface: Continuity Relations

We analyze rel. (40)–(41) derived for the implicit interface �r(I ) (see Fig. 1).

4.1.1. Pressure and tangential shear stress tensor

We first consider rel. (40) where, using rel. (36) with rel. (2),

mq
[2] + Qq = ∂q (−�e p[1]

q ). (50)

According to rel. (36), pq
[2] = O(ε3) and rel. (40) becomes

[ f eq.+(R)
q − �(R)

e p(R)
q ](�r(I )) = [ f eq.+(B)

q̄ (�r(I )) − �(B)
e p(B)

q ](�r(I )) + O(ε3), (51)

where f eq.+
q (�r(I )) = f eq.+

q (�r) + mq
[1]

2
= f eq.+

q + ∂q f eq.+
q

2
,

�e pq (�r(I )) = �e pq (�r) + 1

2
∂q (�e pq ). (52)

Let q⊥ identify the vertical links. With the assumption that ∂z jz(�r(I )) = 0, then
p[1]

q⊥ = 0 and, therefore, f eq.+(R)
q⊥ = f eq.+(B)

q⊥ in rel. (51). Provided that the equilib-
rium weights are continuous, the interface condition (51) reduces to the pressure
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continuity condition (18)

P (R)(�r(I )) = P (B)(�r(I )), when E (R)
q⊥ (�r(I )) = E (B)

q⊥ (�r(I )). (53)

The last condition is valid, e.g., for Stokes equilibrium function (E (u)
q (�u) = 0 in

rel. (10)), or when jz = 0, or when uz(�r(I )) is continuous and densities are equal,
ρ

(R)
0 = ρ

(B)
0 . Including the surface tension term into f eq.+

q may modify the pressure
continuity relation (see Ref. 19). We then multiply rel. (51) by Cqα , α = {x, y}
and take the sum over the interface links. The obtained relation,

⎡

⎣�(R)
e

∑

q∈I

p(R)
q Cqα

⎤

⎦ (�r(I )) =
⎡

⎣�(B)
e

∑

q∈I

p(B)
q Cqα

⎤

⎦ (�r(I )) + O(ε3) (54)

states that the continuity for the tangential shear stress components νDαz in the
form (17) since νDαz = 2

3�e
∑

q∈I pqCqα + O(ε3).

4.1.2. Momentum and velocity

The interface condition (41) is related to the continuity of the link momentum
component jq . We first neglect 
q from (41), as related to the pressure gradient
and second derivatives of jq . The remaining term, f eq.−

q + 1
2Qq + 1

2 pq
[1], with

pq
[1] = ∂q f eq.−

q , represents the first order Taylor expansion for jq , then

j (R)
q (�r(I )) = j (B)

q (�r(I )) + O(ε2), q ∈ I. (55)

Taking a sum over the interface links which go through a given point �r(I ), one
obtains the continuity condition for the normal component jz(�r(I )). Substituting
condition j (R)

z = j (B)
z into rel. (55), one derives the continuity condition for the

tangential momentum components. Then,

j (R)
α (�r(I )) = j (B)

α (�r(I )), α = {x, y, z}. (56)

We emphasize that condition (56) is not equivalent to the continuity of the tangen-
tial velocity, Eq. (16), when two densities differ and jα �= 0.

4.1.3. Simple Two-phase Flows

We consider two phase Stokes flows:

µ(R)��u = ∇ P (R) − �F(R), z < z(I ),

µ(B)��u = ∇ P (B) − �F(B), z > z(I ). (57)

We assume the Stokes equilibrium distribution unless indicated otherwise.
Linear flows. The continuity conditions, Eq. (56) for the momentum, Eq. (53)

for pressure, and Eq. (54) for viscous stress tangential components are valid exactly
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Fig. 3. Two phase Couette (shear) flow with the viscosity ratios ν(R)/ν(B) = �
(R)
e /�

(B)
e = {1, 10, 103}

is computed with the implicit (left) and explicit (right) interfaces located at the middle of the channel.

Data: �
(R)
e = 1, jα(−H ) = 0.05(l.u), jα(H ) = 0. Implicit interface (z=0): solution is exact. Explicit

interface (z=0): When ν(I ) is computed as a harmonic mean of ν(R) and ν(B), the solution is exact in
the bulk. The solution is inexact when ν(I ) is computed as an arithmetic mean, unless ν(R) = ν(B).

midway along the link when 
q = 0 and p[2]
q = 0. The simplest flow which satis-

fies these conditions is two phase Couette (shear) flow parallel to solid boundaries
(∇ P ≡ 0, �F ≡ 0). The bounce-back condition with the addition of a prescribed
boundary momentum value maintains the linear momentum distributions exactly
when solid boundaries are located midway between grid nodes and parallel to
the main lattice axes. Linear boundary interpolations(2, 22) maintain such solutions
exactly for any arbitrary location of the walls with respect to the lattice. The
free eigenvalue function �o has no impact on the linear solutions. The picture
on the left in Fig. 3 demonstrates that the obtained solution jα(z) fits exactly the
piece-wise linear distribution, regardless of the viscosity ratio, provided that the
interface lies midway between two rows of grid nodes.
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For Couette flow, the distribution jα(z) is independent of the uniform pressure
distribution P(z). If, following,(41) one assumes two distinct fluid densities ρ

(i)
0 =

P (i)/c2
s

(i)
, and computes the tangential velocity as u(i)

α = j (i)
α /ρ

(i)
0 , then, necessarily,

the velocity u(i)
α will undergo a jump on the interface, u(R)

α /u(B)
α = ρ

(B)
0 /ρ

(R)
0 (even

when the kinematic viscosities are equal) and the continuity condition (16) will
be violated.

Parabolic flows. As a next example we consider two phase Poiseuille flow
parallel to solid boundaries where the one dimensional parabolic velocity profile
u(i)

α (z), α = x or α = y, satisfies the no-slip condition. The interface conditions
are given by rel. (16), (18) where uz ≡ 0. The LB solutions may match Poiseuille
flows, e.g., with the piece-wise constant force values and no pressure gradients:

Q−
q

(i) =
[
s f

q t�
q (�F · �Cq )

](i)
,

Q−1∑

q=1

s f
q t�

q C2
qα = 1, then F (i)

α = −ν(i)∂2
z j (i)

α .

(58)

The obtained pressure distribution is then uniform and mq
[1] ≡ 0. It follows from

rel. (54), that the piece-wise linear distribution ν(i)∂z j (i)
α (z) is continuous midway

between grid rows. It follows from rel. (41), (55) that the parabolic distribution,
jα(z), is continuous midway along the link if, for the diagonal interface links


(R)
q − 1

8
∂2

q f eq.−(R)
q = 
(B)

q − 1

8
∂2

q f eq.−(B)
q , where 
q = −�omq

[2]

= �o(�e∂
2
q f eq.−

q + Q−
q ), CqαCqz �= 0. (59)

Substituting Q−
q

(i) = −[s f
q

�e

3 ∂2
q f eq.−

q ](i) into Eq. (59), and choosing equal values

s f
q

(i) = s f for diagonal interface links, Eq. (59) is satisfied when

�eo = [�e�o](R) = [�e�o](B) = const, if
F (R)

ν(R)
= F (B)

ν(B)
, (60)

�eo = [�e�o](R) = [�e�o](B) = 3

8(3 − s f )
, 0 ≤ s f < 3, otherwise.

(61)

Usually, we set s f
q

(i) ≡ 1. Then rel. (61) gives �eo = 3
16 , i.e.:

λ(I )
o = −8

λ
(i)
e + 2

λ
(i)
e + 8

. (62)
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Fig. 4. Two phase Poiseuille flow with implicit interface and ν(R)/ν(B) = 102, F (B)/F (R) = 10 is
computed using the bounce-back at solid boundaries and the different values for free parameter

�eo. Data: �
(R)
e = 1, �

(R)
e �

(R)
o = �

(B)
e �

(B)
o , F (R) = 5 × 10−4 on the coarse grid (left) and F (R) =

5
4 × 10−4 on the fine grid (right). The solution is exact when �eo = 3

16 , s f = 1, in agreement with
rel. (61), (62)

The LB solution for Poiseuille flow therefore consists of two parabolic parts related
by the following continuity conditions (using notation ||ψ || = ψ (B) − ψ (R)):

||ν∂z j(z(I ))|| = 0, ||T ( jα)|| = 0, where

T (i)( j) =
(

j (i) + 1

2
∂z j (i) + (3 − s f )

3
[�o�e∂

2
z j](i)

)
(�r(i)). (63)

Remarkably, the closure relation corresponding to the bounce-back rule, applied
at the boundary node �rb, is exactly T ( jα(�rb)) = 0 (see Refs. 18, 22).

For single phase flow, an effective location of the no-slip wall at z = H eff is
shifted from the assumed location z = H (midway between grid nodes): H eff2 −
H 2 = 4

3�eo − 1
4 when s f

q ≡ 1. Therefore the boundary error increases linearly
with the viscosity when the free parameter �o is fixed, unless condition (62)
is satisfied. One should keep �eo at a fixed value for the computations of the
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Fig. 5. Two phase Poiseuille flow with the equal curvatures, F (R)/ν(R) = F (B)/ν(B), ν(R)/ν(B) =
�

(R)
e /�

(B)
e = 10 and an implicit interface at z = −4. The solutions are computed with �eo =

�
(R)
e �

(R)
o = �

(B)
e �

(B)
o = 1 and with �

(R)
o = �

(B)
o = 1

2 . Exact solution corresponds to equal �eo

values, in agreement with rel. (60).

permeability of the porous media, otherwise the derived permeability values will
depend on the fluid viscosity, via the condition T ( jα(�rb)) = 0. Fixed �eo values
maintain viscosity independent permeabilities for any arbitrary porous media,
because of the specific form of the coefficients in the closure relation imposed by
the bounce-back condition (see Refs. 22, 44).

For two-phase flow, when conditions (60)–(61) are not satisfied, the second
order error combines two components, the boundary error of the bounce-back
condition and the interface error of the implicit coupling. Figure 4 demonstrates
the impact of the free eigenvalue combination �eo = �

(R)
e �

(R)
o = �

(B)
e �

(B)
o on the

obtained solutions. All numerical computations are done with s f
q = 1. The exact

solution is obtained with �
(i)
eo = 3

16 what is in agreement with the analysis. The
normalized error ( j(z) − j th(z))/j (I ) is higher here for the less viscous phase.
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We then separate the boundary and the interface errors, performing the bound-
ary conditions exactly with the help of the third order accurate multi-reflection
condition MRI (see Table 2 in Ref. 22). Figure 5 addresses the case of equal curva-
ture. In agreement with rel. (60), the solution is exact for any equal combinations
�

(i)
eo . Taking equal free eigenvalue functions, here �

(R)
o = �

(B)
o = 1

2 , the solution

deviates from the exact profile when ν(R) �= ν(B) and, therefore, �
(R)
eo �= �

(B)
eo .

Solution (61) is also valid when the constant pressure gradient and the con-
stant forcing are combined, or when the force is absent and mq

[1] replaces −Q−
q

in rel. (59) (for diagonal interface links, m[1]
q = t�

q (∇ P · �Cq ) = �e

3 ∂2
q f eq.−

q ). The
solution (62) was first obtained for the two phase FCHC MRT model in Ref.
17. TRT and MRT models based on the cubic velocity sets will obtain equal
parabolic distributions when the even eigenvalues, related to kinematic viscosity,
and the odd eigenvalues, associated to the third order polynomial basis vectors
Cqα(C2

qz − const), satisfy rel. (60)–(61). The other even MRT eigenvalues do not
influence the Poiseuille flow solutions unless the Navier-Stokes equilibrium func-
tion is used. When the non-linear term is included, the solution j (i)

α (z) does not
alter, using the “compressible” or “incompressible”equilibrium forms, for any
values of other even eigenvalues. On the contrary, for the TRT-operator only, the
solution ρ(z), and therefore j (i)

α (z)/ρ(z) is not modified (for MRT model, see rel.
A.13-A.15 in Ref. 21).

When the interface is not parallel to the coordinate axes, all first order results
remain valid, due to rotational invariance of the first order expansion, but not solu-
tion (61), because of the lack of invariance for the second order terms. Particular
solutions for λo(λe) are derived in Refs. 17, 19 for inclined channels.

When the obtained pressure distribution is uniform or linear, the solution for
jα(z) does not depend on the employed values of c2(i)

s and ρ
(i)
0 , and the solution

for u(i)
α = j (i)

α /ρ
(i)
0 is therefore discontinuous on the interface when two densities

differ, like for the case of Couette flow.

4.2. Explicit Interface: Collision Components

We now analyze rel. (48)–(49) derived for the explicit interface �r(I ) (see
Fig. 2).

4.2.1. Pressure and Tangential Shear Stress Components

Let us consider first Eq. (48). For forcing (2), Q(I )
q − Q(I )

q̄ = 2Q(I )
q , −Q(R)

q̄ =
Q(R)

q . If we set

Q(I )
q = 1

2

(
Q(R)

q + Q(B)
q

)
, (64)



180 Ginzburg

then the forcing terms vanish in rel. (48). If we set then

m(I )
q = 1

2

(
m(R)

q + m(B)
q

)
, (65)

the odd order terms vanish in rel. (48) and we obtain for �r = �r(I ):

[
f eq.+(R)
q − �(R)

e p(R)
q

] = [
f eq.+(B)
q − �(B)

e p(B)
q

]
. (66)

This condition is equivalent to rel. (51) and further analysis is identical. The conti-
nuity for pressure and tangential stress tensor components can then be established
for the interface node �r(I ) under the conditions (37), (53) and provided that the
interface quantity m(I )

q is defined via rel. (65). Choosing equal free eigenvalues,

λ
(I )
o = λ

(R)
o = λ

(B)
o , rel. (65) becomes

f ne.−(I )
q = 1

2

(
f ne.−(R)
q + f ne.−(B)

q

)
, (67)

or, replacing f ne.−(I )
q by its definition (see Eq. (47)) and taking into account that

f eq.+(R)
q = f eq.+(B)

q owing continuity of the pressure, we get:

f eq.−(I )
q = 1

2

(
f eq.−(R)
q + f eq.−(B)

q

) + 1

2

(
f ne.+(R)
q − f ne.+(B)

q

)
. (68)

This means that the interface equilibrium anti-symmetric part should differ from
its continuation in the bulk when the f eq.−(R)

q (�r(I )) = f eq.−(B)
q (�r(I )), i.e. when mo-

mentum is continuous, unless two viscosities are equal ( f ne.+(R)
q = f ne.+(B)

q ). This
property is further analyzed in Sec. 4.2.3.

4.2.2. Interface Viscosity

Let us consider now Eq. (49). For forcing (2), Q(I )
q + Q(I )

q̄ = 0. We define

first f eq.+(I )
q :

f eq.+(I )
q = 1

2

(
f eq.+(R)
q + f eq.+(R)

q̄

)
. (69)

Using this definition, we split f ne.+(I )
q into two parts:

f ne.+(I )
q = f ne.+(I )

q
[1] + f ne.+(I )

q
[2]

,

f ne.+(I )
q

[1] = 1

2
( f ne.+(R)

q + f ne.+(B)
q ) ,

f ne.+(I )
q

[2] = 1

2
( f −(R)

q − f −(B)
q ). (70)
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If we set in Eq. (49)
⎧
⎨

⎩
λ

(I )
e ( p(R)

q

λ
(R)
e

+ p(B)
q

λ
(B)
e

) = p(R)
q + p(B)

q ,

λ
(I )
e

2 ( f −(R)
q − f −(B)

q ) = 

(B)
q − 


(R)
q ,

(71)

then Eq. (49) becomes

[2 f eq.−(R)
q + Q(R)

q ](�r(I )) = [2 f eq.−(B)
q + Q(B)

q ](�r(I )). (72)

This condition is equivalent to the continuity condition (55) for the momentum
components j (i)

q . Further analysis of this relation yields the continuity of the normal
and tangential momentum components.

One can try to derive the solution for λ
(I )
e from Eq. (71). Multiplying the first

line in rel. (71) by Cqα , and taking their sum, they become:

λ(I )
e (

D(R)
αz

λ
(R)
e

+ D(B)
αz

λ
(B)
e

) = D(R)
αz + D(B)

αz , (73)

or, equivalently,

�(I )
e = �

(B)
e rν + �

(R)
e

rν + 1
, rν = D(B)

αz

D(R)
αz

. (74)

It follows from the continuity of the tangential stress components that

rν = ν(R)

ν(B)
= �

(R)
e

�
(B)
e

. (75)

Substituting this relation into rel. (74), the interface viscosity value, ν(I ) = 1
3�

(I )
e ,

becomes equal to the harmonic mean value of ν(R) and ν(B):

ν(I ) = 2ν(R)ν(B)

ν(R) + ν(B)
. (76)

Let us comment on this solution. Grunau(30) constructs a parabolic approxima-
tion which links two relaxation parameters τ (i) = − 1

λ
(i)
e

and leads to the harmonic

mean value for the interface averaged parameter τ (I ) = 2τ (R)τ (B)/(τ (R) + τ (R)),
or, equivalently, the arithmetic mean value for the interface eigenvalue λ

(I )
e . This

solution differs from (76). Most often, ν(I ) is computed with the linear interpo-
lations where the weights are related to the phase indicator value (e.g., the mass
fractions in Ref. 54 or the index function in Ref. 31). The estimation error of
the surface tension coefficient, created via the perturbation term, reduces when
the interface viscosity is computed by the weighted mean value (see in Ref. 20).
The current analysis shows that the exact transport of the non-equilibrium com-
ponents, corresponding to the interface condition (17), can be achieved with the
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harmonic mean value of the kinematic bulk viscosities. Note that this condition is
not equivalent to the harmonic mean value of the dynamic bulk viscosities when
the two densities differ.

4.2.3. Free Collision Parameters

Taking into account the continuity condition (72), it arises that

f −(R)
q − f −(B)

q =
(

m(R)
q

λ
(R)
o

− m(B)
q

λ
(B)
o

)

− 1

2

(
Q−(R)

q − Q−(B)
q

)
. (77)

We substitute this relation into the second line of rel. (71), which reads

1

2
λ(I )

e ( f −(R)
q − f −(B)

q ) = �(R)
o m(R)

q − �(B)
o m(B)

q . (78)

When λ
(R)
o = λ

(B)
o = λ

(I )
o and parabolic flows are considered, where for diagonal

interface links Q−
q

(i) = −s f [�e

3 ∂2
q f eq.−

q ](i) and ∂q P (R) = ∂q P (B), we obtain

m(R)
q − m(B)

q

Q−(R)
q − Q−(B)

q

= 3 − s f

s f
, 0 ≤ s f < 3, if Q−(R)

q �= Q−(B)
q , CqαCqz �= 0.

(79)

From Eq. (78) with rel. (77), (79) the solution for �
(I )
o is

�(I )
o = �(R)

o = �(B)
o , if F (R) = F (B),

�(I )
eo = �(I )

o �(I )
e = 3

4(3 − s f )
, �(I )

o = �(R)
o = �(B)

o , if F (R) �= F (B). (80)

Solution (80) differs by a factor 2 from solution (61), obtained for the implicit
interface.

4.2.4. Summary

The first order analysis shows that the immobile interface node �r(I ) will main-
tain continuity of the symmetric equilibrium part, f eq.+(R)

q = f eq.+(B)
q , momentum,

�j (R) = �j (B), and tangential shear stress, ν(R)D(R)
αz = ν(B)D(B)

αz , α = {x, y}, provided
that the interface collision components satisfy, for the interface links, the condi-
tions (64), (65), (69) and when the interface viscosity is given by rel. (76). These
conditions are

Q(I )
q = 1

2
(Q(R)

q + Q(B)
q ). (81)
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m(I )
q = 1

2
(m(R)

q + m(B)
q ), (82)

f eq.+(I )
q = 1

2
( f eq.+(R)

q + f eq.+(B)
q ), (83)

ν(I ) = 2ν(R)ν(B)

ν(R) + ν(B)
. (84)

Let us illustrate them for the piece-wise linear, two phase flow in the absence of
force (�j = �J). The arriving exact solution is

f (I )
q = f eq.(R)

q + t�
q

λ
(R)
e

∇q j (R)
q , f (I )

q̄ = f eq.(B)
q̄ + t�

q

λ
(B)
e

∇q j (B)
q ,

m(R)
q = m(B)

q = 0, q ∈ I. (85)

If m(I )
q = 0 according to rel. (82), then the populations leaving the interface main-

tain exactly solution (85), due to choice of the interface viscosity (84) (see rel.
(73)):

f̃ (I )
q = f eq.(B)

q + t�
q

(
1

λ
(B)
e

+ 1

)
∇q j (B)

q ,

f̃ (I )
q̄ = f eq.(R)

q̄ + t�
q

(
1

λ
(R)
e

+ 1

)
∇q̄ j (R)

q̄ , q ∈ I. (86)

However, Eq. (82) yields rel. (68), which gives here exactly:

j (I )
q = 1

2
( j (R)

q + j (B)
q )(�r(I )) + δ jαCqα, q ∈ I

δ jα = 1

2

(
∂z j (R)

α

λ
(R)
o

− ∂z j (B)
α

λ
(B)
o

)

= 1

4

(
∂z j (B)

α − ∂z j (R)
α

)
, α = {x, y}. (87)

Therefore, when

j (I )
α = 1

2
( j (R)

α + j (B)
α )(�r(I )) + δ jα, α = 1, . . . , d, (88)

then the piece-wise linear solution is exact in the bulk, and vice-versa. However,
when the arriving populations bring continuous values, the total momentum j (I )

α

will differ by the quantity δ jα . The deficiency δ jα is due to the difference between
the kinematic viscosities and it converges linearly with space refinement.

Linear flow. Let us illustrate the obtained relations using two phase Couette
flow where m(R)

q = m(B)
q = 0 and λ

(i)
o may take arbitrary values, in agreement

with rel. (78). We set f eq.−
q (�r(I )) = t�

q (�j(I ) · �Cq ), �j(I ) = �J(I ), �J(I ) being the total
population momentum. The picture on the right in Fig. 3 shows the obtained
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solutions. The distribution jα(z) is exact in the bulk and satisfies rel. (87) on the
interface, when ν(I ) is computed by the harmonic mean value. The picture also
shows the piece-wise linear solutions obtained with the arithmetic mean value,
ν(I ) = (ν(R) + ν(B))/2. The obtained shear ratio is then correct but the solution is
inexact since the interface viscosity does not maintain the exact transfer of the
non-equilibrium parts. The total interface momentum does not correspond to a
continuation of the bulk values, but the discrepancy is smaller than those obtained
with the harmonic mean values.

Parabolic flow. When the force is present, one should replace �j(i) with �J(i) in
rel. (87). Solution (88) is valid however for both, �j(i) = �J(i) + 1

2
�F(i) and �J(i), due to

rel. (81) for the interface forcing. When the forces are equal, the exact Poiseuille
solution requires that free eigenvalues are equal, λ(R)

o = λ
(B)
o = λ

(I )
o , in addition to

rel. (81)–(84). The bounce-back reflection will not maintain the exact solutions
when the two viscosities differ since one cannot satisfy condition (61), �

(i)
eo = 3

16 ,
for both phases together. We use again MR1 boundary condition. Figure 6 confirms
that, for the harmonic mean interface viscosity, the solution is exact in the bulk
and its deviation on the interface corresponds to rel. (87), as with Couette flow.
The solutions obtained with the arithmetic mean value consist of two parabolic
profiles with correct curvature but lack the exact coupling of the tangential stress
components.

When the forces differ, the eigenvalue combination �
(I )
o �

(I )
e should be set

equal to 3
8 and both λ

(R)
o and λ

(B)
o values are set equal to λ

(I )
o (see rel. (80)).

Since this solution differs from the solution (61), �
(i)
eo = 3

16 , the bounce-back
reflection will not maintain exact solutions, even when the two viscosities are equal.
The picture on the left in Fig. 7 demonstrates the exact bulk solutions obtained
for ν(R)/ν(B) = 103, F (R)/F (B) = 10, using the MR1 boundary conditions. The
channel is discretized with 9 and 27 points, reducing forcing by a factor 32 for the
finer grid. The obtained solutions satisfy rel. (87) on the interface and therefore,
condition (82) is valid again. The interface correction δ jα converges linearly with
space refinement.

When the pressure distribution is constant but bulk densities differ, it fol-
lows from condition (83) that c2(I )

s = 1
2 (c2(R)

s ρ(R)/ρ(I ) + c2(B)
s ρ(B)/ρ(I )), i.e. c2(I )

s

is represented via a mass weighted combination when ρ(I ) = (ρ(R) + ρ(B))/2.
The numerical simulations confirm that the solution does not change for j (i)

α and
therefore, j (i)

α /ρ
(i)
0 is again discontinuous on the interface when the two densities

differ.
In conclusion we mention that the macroscopic interface quantities corre-

spond mostly to a sum of the two separate moments in the two phase LB schemes.
The equilibrium interface momentum value is adjusted artificially for some algo-
rithms, e.g. in Ref. 43, when two separate evolution equations with BGK collisions
are employed (see also the remark after Eq. (9)). The solution (88) and examples
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Fig. 6. Poiseuille two phase solutions with ν(R)/ν(B) = 10 (left picture) and ν(R)/ν(B) = 103 (right
picture) and equal forcing are computed when the interface is located at the grid node z = 0. Interface
kinematic viscosity is computed as a harmonic mean value and as an arithmetic mean value of bulk
values. The solution is exact for the harmonic mean value except for the interface node, where its

discrepancy agrees with rel. (87), (88). Data: �
(R)
e = 1, F (R) = F (B) = 2.5 × 10−4(l.u).

above show that the method may give an exact bulk solution when the equilibrium
momentum value differs from a continuation of the bulk values, naturally seen
as a “physical” momentum value. Extrapolations from the bulk values can be
employed to define the effective macroscopic solution for the interface nodes.

5. AADE: INTERFACE ANALYSIS

Assuming the generic equilibrium function (3) for the AADE, with the solu-
tion (21)–(24) for the combinationTq = �q Eq , we analyze the interface conditions
assuming that the source term represents the mass source (rel. (2)) and the eigen-
values obey rel. (8). For all computations, the d3Q15 velocity set is used. We put
“red” soil on the bottom and “blue” soil on top of the aquifer.
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Fig. 7. Poiseuille two phase solutions with ν(R)/ν(B) = 104, F (B)/F (R) = 10, are computed when the

explicit interface is located in the middle of the channel consisting from 9 and 27 nodes. Data: �(R)
e = 1,

F (R) = 5 × 10−4 on the coarse grid. Left picture: ν(I ) is computed as a harmonic mean value of bulk
values. Solution is exact except for the interface node z = 0 where it agrees with rel. (87), (88). Right
picture: ν(I ) is computed as an arithmetic mean value.

5.1. Implicit Interface

We analyze rel. (40)–(41) derived for the implicit interface z = z(I ), midway
between the nodes with the “red” and “blue” collisions (see Fig. 1).

5.1.1. Advective-diffusive flux

The interface condition (41) is related to the continuity of the flux projection
f eq.−
q + 
q . The term 1

2 (pq + Qq ) represents a linear interpolation to point mid-

way along the link: 1
2 (p[1]

q + p[2]
q + Q+

q ) = 1
2 (∂q f eq.−

q + ∂q
q ) such that Eq. (41)
becomes:

[ f eq.−(R)
q + 
(R)

q ](�r(I )) = [ f eq.−(B)
q + 
(B)

q ](�r(I )) + O(ε3). (89)
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This continuity relation is exact when the flux components are linear functions of
the coordinates. The sum of rel. (89) over all links going through �r(I ) corresponds to
the normal flux continuity condition (33). We emphasize that the implicit interface
conditions constrain not only the normal but also the tangential flux components.
This may become incompatible with the continuity of the tangential derivatives on
the soil boundaries in heterogeneous soils. This problem is addressed in Ref. 27.

5.1.2. Diffusion Variable

When the term −�e pq + Qq is neglected, the interface condition (40) yields

f eq.+(R)
q (�r(I )) = f eq.+(B)

q̄ (�r(I )) + O(ε2), q ∈ I. (90)

In particular, pq
[1] = pq

[2] = 0 when the advective-diffusive flux is constant. For

the equilibrium function (3) with f eq.+
q

(i) = E (i)
q h′(i), the diffusive variable h′(�r(I ))

is continuous when, necessarily,
∑

q∈I

E (R)
q (�r(I )) =

∑

q̄∈ Ī

E (B)
q̄ (�r(I )). (91)

Equality of the weights, E (R)
q = E (B)

q̄ presents a sufficient but not a necessary
condition for the TRT-E model (see TRT-E description after rel. (24)). Continuity
of the diffusion variable may disagree with the physical continuity condition. As an
example, let us consider Richards’ Equation (31) in isotropic heterogeneous media.
Using the moisture content or the Kirchoff transform formulations, the continuity
conditions (90) will induce the continuity of the water content variable θ (�r(I ))

or the one for the Kirchoff transform variable
∫ h′(θ)
−∞ K ′(h)dh, respectively. When

the retention curves h(θ ) or the conductivities K (h) differ for the two soils, the
obtained pressure distribution should undergo a jump on the interface. Numerical
computations confirm this analysis. We demonstrate in Sec. 5.1.4 that a mixed
formulation, where the diffusion variable is proportional to the pressure head
variable, matches correctly for transient solutions with sharp pressure gradients
on the interfaces.

5.1.3. Simple Layered Solutions

Test solutions presented in this section can be obtained by either solving
the diffusion equation (h′ = s, s is a conserved quantity) directly, or by solving
Richard’s Eq. (31) in the saturated zone. In all simulations in this section, we use
the pressure formulation to the steady state Richard’s Eq. (31), with D̄(i)(s) =
h

′(i)/H eq. (H eq. as an accelerating parameter) and the diffusion tensor K′.
Linear solutions. The advective-diffusive flux and the diffusion variable are

both continuous exactly midway along the interface link when pq = 0, m[2]
q = 0
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and Qq = 0. The simplest problem which satisfies these conditions is the vertical
saturated flow in stratified aquifers, solution to Eq. (30). When the vertical axis
is a principal axis of the permeability tensor, then the off-diagonal elements K

′(i)
xz

and K
′(i)
yz vanish. The vertical flow corresponds to a piece-wise linear, continu-

ous distribution h(z) where ∂zh(i)(z(I )) obeys the continuity condition (33). The
simplest boundary condition to prescribe the Dirichlet condition midway between

grid nodes, f eq.+
q (�rb + 1

2
�Cq ) = f eq.+

q
(b)

, is the anti-bounce-back rule, analyzed in
Ref. 24:

fq̄ (�rb, t + 1) = − f̃q (�rb, t) + 2 f eq.+
q

(b)
. (92)

The anti-bounce-back rule is exact when the distribution D̄(�r) is piece-wise linear.
With the purpose to find solutions for free parameters in rel. (21)–(24) which
maintain the vertical flow exactly, we write down the exact population solution for
both interface sides: [ f eq.+

q (z)](i) = E (i)
q h(i)(z), mq

(i) ≡ E (i)
q ∂zh(i)Cqz , pq

(i) ≡ 0.
When the advection term is absent, the solution is maintained for each separate
interface link without any additional coupling terms, if

E (R)
q = E (B)

q , E (R)
q �(R)

q ∂zD̄(R) = E (B)
q �(B)

q ∂zD̄(B), i.e.
�

(R)
q

�
(B)
q

= rz, q ∈ I,

rα = [∂αD̄(B)/∂αD̄(R)](�r(I )), rz = K
′(R)
zz

K
′(B)
zz

when �J = 0. (93)

Let us consider how these conditions are handled by the L- and TRT-E collision
strategies.

L-Model (isotropic weights, anisotropic eigenvalues): operating with the
continuous positive weights, E (i)

q = cet�
q , the model can try to satisfy the condition

�
(R)
q /�

(B)
q = rz with a proper choice of two anisotropic sets of the eigenvalue

functions. The following solution for s(i)
d is referred to below as the vertical

strategy (available only if Smax
z < Dmin

z ):

s(i)
d = βv K

′(i)
zz , βv = (1 − 2t�

1 )Dmin
z + 2t�

1 Smax
z ,

Dmin
z = min

i

{
Dmin(i)

K
′(i)
zz

}

, Dmin(i) = min
α=1,...,d

{K
′(i)
αα }, Smax

z = max
i

{
Smax(i)

K
′(i)
zz

}

,

Smax(i) = max
q

S(i)
q , S(i)

q =
∑

α �=β

K
′(i)
αβ CqαCqβ .

(94)
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Fig. 8. Vertical flow is computed with the implicit tracking (left) and the explicit tracking
(right) for the horizontal soil boundary, located at the middle of the heterogeneous aquifer.

The permeability tensor is heterogeneous, K a(R)
zz /K a(B)

zz = 1/10, K (R)
s = K (B)

s = 1
6 m2/h. Bound-

ary conditions are: h = 0.5 m on the bottom and h = 0 on the surface. Scalings are: U = 1 and

L = 10. The vertical eigenvalue strategies (94), (95) are used: e.g., in isotropic case: �
(R)
o = 1

2 ,

�
(B)
o = 5.

When the free parameter s(i)
d in (21)–(24) is computed with rel. (94), condition

�
(R)
q /�

(B)
q = D(R)

zz /D(B)
zz holds for vertical links. This condition is valid also for

the eigenvalue functions �
(R)
q and �

(B)
q assigned to the diagonal links provided

that the off-diagonal elements K
′(i)
αβ either vanish or are proportional to K

′(i)
zz . The

restriction on the off-diagonal elements, Smax
z < Dmin

z , is because of the necessary
positivity condition for �q = Tq/cet�

q . Relations (21)–(24) with (94) yield equal
eigenvalue functions for the coordinate and diagonal links when the diffusion
tensor is isotropic.

The picture on the left in Fig. 8 demonstrates the solution h(z)/h(I ), where
h(I ) is an exact interface value. The solution is exact for any ratio of vertical
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Fig. 9. Vertical flow is computed with the implicit interface tracking. Same data as for the previous

figure but the vertical strategies (94), (95) are not used. Left: L-model is applied with �
(R)
q =

�
(B)
q = 1

2 for all diagonal links, and �
(R)
q = 1

2 , �
(B)
q = 7 1

4 for the vertical links such that the solution

�
(R)
q /�

(B)
q = rz is not satisfied. Right: TRT-E-model is applied with �

(R)
o = �

(B)
o = 5 such that the

condition (91) is not satisfied.

components provided that the condition �
(R)
q /�

(B)
q = rz is satisfied. In principle,

when the piece-wise constant advection term is present, �J(i) = −K′(i) · �1z , the
flux condition in (93) should incorporate J (i)

q . The solution for �
(R)
q /�

(B)
q will

then depend on the effective rz-value. We find however that using the eigenvalue
strategy (94), the solution remains exact even when the advection term is present.
This means that the accommodation terms,(16) appearing to link the discontinuous
J (i)

q values, have no impact on the diffusion variable and its gradients. When

�
(R)
q /�

(B)
q �= K

′(R)
zz /K

′(B)
zz for some interface links, the solution is no longer exact.

We mention, that the uniform horizontal flow needs to chose equal values,
�

(B)
q = �

(R)
q , for the diagonal links (cf. rel. (93) where �

(R)
q ∂αD̄(R) = �

(B)
q ∂αD̄(B),

rα = 1, α = {x, y}). Obviously, the “vertical” and “horizontal” constraints can
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not be satisfied simultaneously for the diagonal links. This problem is in-
vestigated in Ref. 27. The picture on the left in Fig. 9 shows one exam-
ple. Here, the eigenvalue functions follow the “horizontal” strategy such that
�

(R)
q = �

(B)
q for the diagonal links and no one interface link satisfies the condition

�
(R)
q /�

(B)
q = rz .

TRT-E Model (anisotropic weights, isotropic eigenvalues): the equality of
the equilibrium weights would restrict the heterogeneity of the anisotropic prop-
erties. Constructing the exact population solution for the vertical heterogeneous
flow (to be reported in Ref. 16), one can show that the coupling terms have no
impact on the diffusion variable and its gradients when all �

(i)
o are proportional to

K
′(i)
zz (βE is the coefficient of proportionality restricted by stability conditions on

the equilibrium weights (see Refs. 23, 26):

�(i)
o = βE K

′(i)
zz , then βE

−1 = 2
∑

q∈I

E (i)
q = 2

∑

q∈I

E (i)
q C2

qz,

βE ≥ max
i

{
K max(i)

K
′(i)
zz

}

, K max(i) = max
α=1,...,d

{K
′(i)
αα }, (95)

Using rel. (95) for �
(i)
o , the weights are continuous only when the two tensors,

K
′(R) and K

′(B) are proportional. The model nevertheless keeps the exact solutions,
with and without advection and regardless of the heterogeneity/anisotropy of the
diagonal and off-diagonal elements. When the necessary condition (91) is not
satisfied, the obtained equilibrium distributions are discontinuous on the interface.
The picture on the right in Fig. 9 demonstrates an example: using equal eigenvalue
functions, �

(R)
o = �

(B)
o , the jump in diffusion coefficients is matched with the

equilibrium weights. The diffusion variable then undergoes a jump on the interface:
h(R)/h(B) = K

′(B)
zz /K

′(R)
zz = 10.

This examples demonstrates that working with the discontinuous equilibrium
weights, one should be much more careful with the choice of the free parameters.
When the weights are continuous, the “risk” consists only in a possible shift (for
non-linear solutions) of the effective interface position, but at leading order the
continuity relations are valid on the interface.

Parabolic solutions. We construct the parabolic solutions inspired by two
phase Poiseuille flow:

∂α′ K
′(R)
αβ ∂β ′ h′ = −M (R), z′ < z(I ),

∂α′ K
′(B)
αβ ∂β ′ h′ = −M (B), z′ > z(I ), (96)
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Fig. 10. Piece-wise parabolic distribution h(z) for K
′(R)
zz /K

′(B)
zz = 100 and M (B)/M (R) = 10 is com-

puted with the different combinations [�e�o](i), [�e�o](R) = [�e�o](B). Anti-bounce-back condi-
tion is applied on the solid boundaries. Implicit interface lies in the middle between two grid node

rows. The solution is exact when [�e�o](i) are computed with rel. (99). Data: K
′(R)
zz = 1

6 , �
(R)
o = 1

2 ,

�
(B)
o = 1

2 × 10−2, M (R) = 1, sm
q = 1

3 when q �= 0.

with interface conditions (33) and Dirichlet boundary conditions h′(±H ) = 0
(as an example). For these solutions, one can write Q+

q = −sm
q �q∂

2
q f eq.+

q when

Cqz �= 0 where sm
q are some weight factors such that

∑Q−1
q=1 sm

q �q∂
2
q f eq.+

q = −M .

Assuming a constant advective term, then p[1]
q = 0, pq

[2] is given by rel. (36)
and the last term in interface continuity condition (40), neglected by rel. (90),
becomes

−�e p[2]
q + 1

2
Q+

q = aq∂
2
q f eq.+

q , aq = �eq (1 − sm
q ) − sm

q

2
�q , q ∈ I.(97)
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In particular, for isotropic media, K ′(i)
αβ = K ′(i)δαβ , M (i) = −K ′(i)∂2

z h′(i), one can
put:

E (i)
q = cet�

q , �(i)
q = �(i)

o = K ′(i)c−1
e , Q+

q
(i) = sm

q t�
q M (i),

Q−1∑

q=0

sm
q t�

q = 1.(98)

When [∂2
q f eq.+

q ](R) = [∂2
q f eq.+

q ](B) (e.g. E (R)
q = E (B)

q and the curvatures are equal),

the LB solution is exact on the interface when the pre-factors are equal, a(R)
q = a(B)

q .
Otherwise, rel. (97) expands the continuity relations to second order if, for the
interface links q ∈ I :

a(i)
q = 1

8
: �(i)

eq = [�e�q ](i) =
[

1

8(1 − sm
q )

+ �qsm
q

2(1 − sm
q )

](i)

, 0 ≤ sm
q < 1.

(99)

In contrast to the Poiseuille flow solution (61), not only the diagonal links but also
the vertical links should satisfy condition (99). The TRT-E model (�(i)

q = �
(i)
o )

can satisfy rel. (99) when sm
q are equal for all interface links. Under this condition,

the L- model can satisfy them only when �q values are equal for interface links
inside each soil. When sm

q = 1
3 , q �= 0 and �q → 0, solution (99) coincides with

rel. (61). We set Q+
q

(i) = 1
3 t�

q M (i), q �= 0, for all computations below. The second
term in rel. (99) which differs from rel. (61) appears since the momentum, Jα , is
redefined with the half forcing but the diffusion variable is not redefined with half
the source quantity.

Substituting the second order expansion (34), (36) into the anti-bounce-back
condition (92), one finds that it localizes, for the parabolic solution, the solid
boundaries midway between �rb and �rb + �Cq when condition (99) is satisfied.
Therefore, condition (99) maintains exactly both, boundary and interface, second
order conditions. Figure 10 illustrates the combined error due to the anti-bounce-
back and inexact matching of the interface continuity conditions. Likewise for
other situations, the error is small when [�e�q ](i) lies below its exact value (99)
and increases drastically with [�e�q ](i). One can compare these results with the
analogous ones for two phase Poiseuille flow shown in Fig. 4.

5.1.4. Vertical Three-layered Drainage System

The analysis above is formally restricted to steady state solutions. However,
preliminary experiments with the transient solutions to Richard’s equation confirm
its validity for them as well. Fig. 12 shows the time evolution in a three-layered
drainage tube, a tough example borrowed from Marinelli and Durnford.(38) The
plots are given for the pressure head h(z), effective water content variable θ̃ (z),
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Fig. 11. Prescribed retention function h(θ̃) (left picture) and relative hydraulic conductivity func-
tion Kr (θ̃) = K (θ̃)/Ks (right picture) are obtained with the BCM model: fine-grained sand:
Ks = 3.528−3m/hour , θs = 0.35, θr = 0.07, λ = 1.5, hs = −0.35 m; medium-grained sand: Ks =
3.528 × 10−1 m/hour , θs = 0.35, θr = 0.035, λ = 3, hs = −0.15 m.

θ̃ = θ−θs

θs−θr
, and Darcy’s velocity uz(z). The column contains medium-grained sand

in the middle and fine-grained sand at the top and bottom. The soil is described
with the BCM (Brooks and Corey(3)-Mualem(40)) constitutive relations plotted in
Fig. 11: h(θ̃) = hs θ̃

−1/λ, λ > 0, Kr (h) = (h/hs)−(λ(l+2)+2), with l = 0.5 as the
pore connectivity parameter.

The mixed LB formulation is applied on an equidistant grid using space
step δz = 1/150 m and time step δt = 24 s. The reference solution (dotted line) is
computed following the “semi-analytical approach”,(38) implemented in the form
described in Ref. 26. The reference method is based on the 1D adaptive space step-
size control Runge-Kutta (RKA) algorithm and the implicit time discretization.
Here, the minimum RKA space step δmin

z ≈ 10−8 − 10−7 m and �t = 10800 s.
We show in Ref. 26 that the RKA method needs extremely small space steps
to accurately compute the jumps of the pressure gradients at the interfaces. The
obtained solutions differ mainly at the initial stage, when the flow changes rapidly
from the saturated one to the unsaturated one and the LB “compressible” effect
in the saturated zone is not completely reduced (∂t h(t) �= 0). The results confirm
that the pressure head space distribution is continuous, whereas the conserved
quantity, the water content, undergoes jumps on the soil boundaries.
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Fig. 12. The picture shows the progression at time t/3600 = 3, 15, 57, 72 s, of the vertical drainage
in a three-layered soil tube of 2 m length when the pressure head h = 2 m at the base is suddenly
reduced to the atmospheric value at t = 0. The solutions are computed with the mixed LB formulation
(solid line) and the “semi-analytical approach” (dotted line).
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5.2. Explicit Interface: Collision Components

We analyze rel. (48)–(49) derived for the explicit interface z = z(I ), located
at the grid nodes midway between the nodes with “red” and “blue” collisions (see
Fig 2).

5.2.1. Advective-diffusive fluxes

Let us first consider Eq. (49). For the interface mass source

Q+(I )
q = 1

2
(Q+(R)

q + Q+(B)
q ), (100)

the source terms vanish in Eq. (49). If we set

p(I )
q = 1

2
(p(R)

q + p(B)
q ), (101)

then rel. (49) reduces to rel. (89). We use it below in the form:

f eq.−(R)
q − f eq.−(B)

q = �(R)
q m(R)

q − �(B)
q m(B)

q , mq = λ−
q f ne.−

q . (102)

Again, the sum over the interface links yields the continuity of the normal flux
component. Let us now consider rel. (101). If the free eigenvalues are equal,
λ

(I )
e = λ

(R)
e = λ

(B)
e , then Eq. (101) becomes

f ne.+(I )
q = 1

2
( f ne.+(R)

q + f ne.+(B)
q ). (103)

According to the definitions in (47), rel. (103) implies:

f eq.+(I )
q = 1

2
( f eq.+(R)

q + f eq.+(B)
q ) + 1

2
( f −(R)

q − f −(B)
q ). (104)

Substituting rel. (102) for f eq.−(R)
q − f eq.−(B)

q , then

f −(R)
q − f −(B)

q = ( f ne.−(R)
q − f ne.−(B)

q ) −

(( f ne.−(R)
q + 1

2
m(R)

q ) − ( f ne.−(B)
q + 1

2
m(B)

q )) = 1

2
(m(B)

q − m(R)
q ) (105)

and rel. (104) becomes

f eq.+(I )
q = 1

2
( f eq.+(R)

q + f eq.+(B)
q ) + 1

4
(m(B)

q − m(R)
q ). (106)

This means that the equilibrium symmetric part will differ from the continu-
ous values f eq.+(R)

q = f eq.+(B)
q unless the soil is homogeneous (m(B)

q = m(R)
q ).

Section 5.2.4 further comments on this relation.
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5.2.2. Interface diffusion coefficients

We consider now Eq. (48). We define first f eq.−(I )
q :

f eq.−(I )
q = 1

2

(
f eq.−(R)
q + f eq.−(B)

q

)
, q ∈ I. (107)

Using this definition, we split f ne.−(I )
q into two parts:

f ne.−(I )
q = f ne.−(I )

q
[1] + f ne.−(I )

q
[2]

,

f ne.−(I )
q

[1] = 1

2

(
f ne.−(R)
q + f ne.−(B)

q

)
, (108)

f ne.−(I )
q

[2] = 1

2

(
f +(R)
q − f +(B)

q

)
. (109)

If we set

λ−(I )
q f ne.−(I )

q
[1] = 1

2

(
m(R)

q + m(B)
q

)
and (110)

λ−(I )
q f ne.−(I )

q
[2] = (

�(R)
e p(R)

q − �(B)
e p(B)

q

) + 1

2

(
Q+(B)

q − Q+(R)
q

)
, (111)

then Eq. (48) becomes

f eq.+(R)
q (�r(I )) = f eq.+(B)

q (�r(I )) + O(ε3), q ∈ I. (112)

This condition states the continuity of the diffusion variable when the equilibrium
weights are continuous. The necessary condition is again given by rel. (91), just as

for an implicit interface. Replacing f ne.−(I )
q

[1]
by its definition (108), and m(B)

q /m(R)
q

by rq , we obtain from Eq. (110):

L : �(I )
q = �

(B)
q rq + �

(R)
q

rq + 1
, where rq = m(B)

q /m(R)
q , q ∈ I,

TRT-E : �(I )
o = �

(B)
o re + �

(R)
o

re + 1
, where re =

∑

q∈I

m(B)
q /

∑

q∈I

m(R)
q . (113)

They may reduce to harmonic mean solutions:

L : �(I )
q = 2�

(B)
q �

(R)
q

�
(B)
q + �

(R)
q

, if
�

(R)
q

�
(B)
q

= rq , q ∈ I,

TRT-E : �(I )
o = 2�

(B)
o �

(R)
o

�
(B)
o + �

(R)
o

, if
�

(R)
o

�
(B)
o

= re. (114)
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According to rel. (21), the vertical diffusion interface coefficients K
′(I )
zz are:

L : K
′(I )
zz = 2ce

∑

q∈I

�(I )
q t�

q , if E (i)
q = cet�

q , q ∈ I, (i) = {(R), (B), (I )}

TRT-E : K
′(I )
zz = βE�(I )

o , βE
−1 = 2

∑

q∈I

E (i)
q . (115)

When, for the L-model, rq = re,∀q ∈ I , then for both models,

K
′(I )
zz = K

′(B)
zz re + K

′(R)
zz

re + 1
, (116)

and for the vertical strategies (94), (95), K
′(I )
zz becomes equal to the harmonic

mean value:

K
′(I )
zz = 2K

′(R)
zz K

′(B)
zz

K
′(R)
zz + K

′(B)
zz

, if re = rz = K
′(R)
zz

K
′(B)
zz

. (117)

This solution coincides with the commonly used vertical approximation for the
inverse of the resistance in case of the direct discretization methods (e.g., in Ref. 1).
For the diffusion equation with the piece-wise constant coefficients, the harmonic
mean interface approximation follows from the exact flux balance condition (e.g.,
in Ref. 53).

5.2.3. Free collision parameters

Substituting condition (109) with rel. (112) into condition (111), we obtain:

λ
−(I )
q

2

(
p(R)

q

λ
(R)
e

− p(B)
q

λ
(B)
e

)

= (
�(R)

e p(R)
q − �(B)

e p(B)
q

) + Q+(B)
q − Q+(R)

q

2
. (118)

When the free eigenvalues are equal and we substituteQ+
q

(i) = −sm
q [�q∂

2
q f eq.+

q ](i),
the solution is

λ(B)
e = λ(R)

e = λ(I )
e , if Q+(R)

q = Q+(B)
q , q ∈ I,

�(I )
eq = �(I )

e �(I )
q = 1

4(1 − sm
q )

+ �
(I )
q sm

q

2(1 − sm
q )

, q ∈ I,

i.e. λ(I )
e = λ(B)

e = λ(R)
e = −(2 + λ−(I )

q )(1 − sm
q ), if Q+(R)

q �= Q+(B)
q .(119)

Here again, all interface links should satisfy rel. (119). When sm
q = 1

3 , q �= 0, and

�
(I )
q → 0, rel. (119) becomes equal to sol. (80). When sm

q are equal for interface

links, solution (119) is available only when �
(I )
q are also equal for all interface
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Fig. 13. Piece-wise parabolic distribution h(z) for K
′(R)
zz /K

′(B)
zz = 100 and M (B)/M (R) = 10 is com-

puted with different combinations [�e�o](I ) when �
(I )
e = �

(B)
e = �

(R)
e . Exact multi-reflection type

boundary conditions are applied for solid walls. The boundary between two soils is located at the grid
node row (explicit tracking). The solution is “exact in the bulk” when [�e�o](I ) is computed from
rel. 119. The data is given in the caption to the Fig. 10.

links. This means that, for such solutions, the L-model is restricted to diagonal
tensors, at least using the vertical strategy (94) when K

′(R)
zz �= K

′(B)
zz . The TRT-E-

model with the vertical strategy (95) may handle exact parabolic solutions for any
tensors, owing to �eo and accommodation layers.

5.2.4. Summary

Due to exact mass conservation, the normal component of the advective-
diffusive flux is continuous on the computational grid regardless of the selected
interface components. The interface node �r(I ) will maintain the solutions with the
continuous symmetric equilibrium parts, f eq.+(R)

q = f eq.+(B)
q̄ and the continuous
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advective-diffusive flux components, f eq.−(R)
q + 


(R)
q = f eq.−(B)

q + 

(B)
q , provided

that the collision components satisfy conditions (100), (101), (107), for the in-
terface links, and condition (113) for the interface eigenvalue functions. These
conditions are, respectively:

Q+(I )
q = 1

2

(
Q+(R)

q + Q+(B)
q

)
, (120)

p(I )
q = 1

2

(
p(R)

q + p(B)
q

)
, (121)

f eq.−(I )
q = 1

2

(
f eq.−(R)
q + f eq.−(B)

q

)
, (122)

L : �(I )
q = �

(B)
q rq + �

(R)
q

rq + 1
, rq = m(B)

q /m(R)
q , (123)

TRT-E : �(I )
o = �

(B)
o re + �

(R)
o

re + 1
, re =

∑

q∈I

m(B)
q /

∑

q∈I

m(R)
q . (124)

The interface eigenvalue functions are represented by harmonic mean values of

the corresponding bulk functions when rq = �
(R)
q

�
(B)
q

and re = �
(R)
o

�
(B)
o

. When

rq = re = rz = K
′(R)
zz

K
′(B)
zz

, q ∈ I, (125)

the vertical interface coefficient K
′(I )
zz becomes equal to the harmonic mean value

of K
′(R)
zz and K

′(B)
zz for diffusion problems.

Let us illustrate rel. (121)–(124) for the piece-wise linear distribution D̄(s) =
h′(z) assuming the simplest case, E (B)

q = E (R)
q = Eq , �J = 0. The exact solution

arriving at the interface is

f (I )
q = Eq

(

h′(R) + 1

λ
−(R)
q

∇q h′(R)

)

, f (I )
q̄ = Eq

(

h′(B) + 1

λ
−(B)
q

∇q̄ h′(B)

)

,

p(R)
q = p(B)

q̄ = 0, q ∈ I. (126)

When p(I )
q = 0 according to condition (121), the populations leaving the interface

maintain the solution (126) exactly due to the construction of the interface diffusion
coefficients, rel. (123)–(124):

f̃ (I )
q = Eq

(

h′(B) +
(

1

λ
−(B)
q

+ 1

)

∇q h′(B)

)

,
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f̃ (I )
q̄ = Eq

(

h′(R) +
(

1

λ
−(R)
q

+ 1

)

∇q̄ h′(R)

)

, q ∈ I. (127)

However, Eq. (121) then implies rel. (106), which gives here exactly:

h′(I ) = 1

2

(
h′(R) + h′(B)

) + δh′, δh′ = 1

4

(
∂zh

′(B) − ∂zh
′(R)

)
. (128)

The picture on the right in Fig. 8 demonstrates the solution h(z)/h(I ) again
obtained using the anti-bounce-back boundary condition. We set f eq.+

q (�r(I )) =
E (I )

q h′(I ), h′(I ) being the interface diffusion variable. As above, it is related linearly
to the conserved quantity s: h′(i) = s(i) H eq., {(i) = (R), (B), (I )}, using the steady
state pressure formulation for the saturated Richard’s equation. The interface
coefficient K

′(I )
zz is computed with rel. (117) when �J = 0 and with the effective rz-

value, rz = [∂zD̄(B)/∂zD̄(R)](�r(I )), when �J �= 0. The eigenvalue strategies (94), (95)
are then applied for three “soils” ((R), (B) and (I )). The obtained solutions are
exact away from the interface. The discrepancy between the equilibrium interface
value h(I ) and the continuation from the bulk, h(R)(z(I )) = h(B)(z(I )), is equal to
δh′/L, where δh′ is given by rel. (128).

The parabolic solutions are shown in Fig. 13. They are computed with
Q+(i)

q = 1/3t�
q M (i) and the third order accurate, multi-reflection type boundary

conditions from Ref. 24 (Eqs. 25–27 there). The harmonic mean value is assigned
for the vertical diffusion coefficient K ′(I )

zz . The TRT-E model with the strategy (95)
again maintains exact solutions for any heterogeneous anisotropic properties.
When the free eigenvalues satisfy rel. (119), the solution is exact in the bulk and
the interface discrepancy δh′/L corresponds exactly to Eq. (128). The plots in
Fig. 13 demonstrate the impact of the free eigenvalue combination [�e�o](I ) on
the interface accuracy when �

(i)
e are equal for both phases and the interface. As

expected, the second order error increases with �e when the diffusion coefficients
are fixed.

6. CONCLUDING REMARKS

We have developed an interface analysis for the link-wise collision operators
with discontinuous collision components. Interface closure relations have first been
established for the symmetric and anti-symmetric parts of the collision operator,
regardless of their physical meaning. Prescribing the equilibrium function, they
can be used to check the continuity properties of the solutions, both for the
hydrodynamic and AADE equations. With the parity argument at hand, we reveal
the analogy of their interface behavior. The analysis then focused on two-phase
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microscopic flow (without surface tension) and variably saturated Darcy’s flows
in a stratified anisotropic heterogeneous aquifer.

For the hydrodynamic modeling with the implicit interface tracking, the ef-
fective interface, where the pressure, momentum and tangential shear stress tensor
components are continuous, is shown to be located midway between the grid nodes
with first-order accuracy (exactly for the piece-wise linear momentum distribu-
tions). For the explicit tracking, the equilibrium function, forcing and relaxation
parameters have been derived from the continuity conditions. The harmonic mean
value for the interface kinematic viscosity was found to give an exact solution for
the transfer of the shear components. When the interface is in the middle between
two phases, the Couette solution for the tangential momentum component is then
matched exactly in the bulk. However, the conserved interface momentum value
and the limit bulk values differ in the case of the explicit interface tracking, even
when the obtained bulk solution is exact. Accurate extrapolations from the bulk
are therefore needed to define the macroscopic momentum solution for the inter-
face nodes. Besides that, when distinct fluid densities are modeled via distinct
sound velocities c2

s , P (i) = c2(i)
s ρ(i), the tangential velocity j (i)

α /ρ(i) appears to be
discontinuous on the interface. It would be interesting to understand if the conti-
nuity of the tangential momentum (and not the velocity) has a practical impact in
realistic computations. Another open question is if the alternative LB approaches
for distinct fluid densities maintain the continuity of the velocity (and not of the
momentum).

For the Darcy’s flow modeling with implicit tracking of soil interfaces, the
continuity of the symmetric equilibrium part and the continuity of the advective-
diffusive flux link components is set midway between the grid nodes at first-order.
The last condition may constrain not only the normal but also the tangential fluxes.
For the explicit interface tracking, the interface collision components have been
derived from the first-order continuity relations. The harmonic mean value for the
inverse of the vertical resistance was found to give an exact solution for the vertical
flow in a heterogeneous aquifer, provided that the bulk collision components are
chosen with some special rules. The deficiency of the explicit tracking appears here
as an inconsistency between the interface diffusion variable and its continuation
from the bulk.

For both interface approaches, the choice of the diffusion variable, in the
homogeneous case conditioned mainly by the robustness of the algorithm, is con-
strained by the continuity conditions. As an example, the different LB formulations
for the Richard’s equation (water content based, pressure based, mixed, and the
Kirchoff transform based) have been specified and analyzed. The continuity of the
diffusion variable may confine the equilibrium weights and restrict the applica-
tion of the equilibrium based approach (E-model) when the anisotropic properties
are heterogeneous. The alternative approach (L-model), based on the continuous
isotropic equilibrium functions and anisotropic sets of the eigenvalue functions,



Lattice Boltzmann modeling with discontinuous collision components 203

appears to be much less sensitive to the choice of the free parameters. Their so-
lutions are problem dependent, and, in particular, the exact collision strategies
differ for horizontal and vertical flows. This problem is partially solved in Ref. 27
where the interface corrections to the evolution equation enforce the matching of
the continuity relations, regardless of the heterogeneity and the anisotropy of the
diffusion tensors.

The solutions obtained for the macroscopic interface transport coefficients
are consistent with known results for direct discretization methods. Extending the
perturbative interface analysis up to second-order, we find special solutions for
the free relaxation parameters which enforce the exact interface conditions for
parabolic flows (e.g. two phase Poiseuille flow) or for parabolic distributions of
the diffusion variable. Combined with the exact boundary conditions, they present
ideal exercises for novices. The exact solutions differ in small details for the
explicit and implicit interfaces, the hydrodynamic and AADE modeling, but they
all restrict free combinations of the eigenvalue functions similarly. Both analytical
and numerical results confirm the necessity to assign small enough values for the
free eigenvalue combinations, typically �e�q < 1. These constraints should be
respected to avoid numerical inaccuracy in the bulk and at the boundaries and
interfaces.
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